---
title: "FIESTA - Green-book Estimators"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{FIESTA - Green-book Estimators}
%\VignetteEngine{knitr::rmarkdown}
\usepackage[utf8]{inputenc}
---
```{r setup, include = F}
library(knitr)
knitr::opts_chunk$set(message = F, warning = F)
```
```{r, include=FALSE}
# Sets up output folding
hooks = knitr::knit_hooks$get()
hook_foldable = function(type) {
force(type)
function(x, options) {
res = hooks[[type]](x, options)
if (isFALSE(options[[paste0("fold.", type)]])) return(res)
paste0(
"", type, "
\n\n",
res,
"\n\n "
)
}
}
knitr::knit_hooks$set(
output = hook_foldable("output"),
plot = hook_foldable("plot")
)
```
```{r, echo=-1}
data.table::setDTthreads(2)
```
## Green-Book (GB) module overview
`FIESTA`'s Green-Book (GB) module calculates population estimates and their sampling errors based on Bechtold and Patterson's (2005), 'Green-Book' for FIA's nationally-consistent, systematic annual sample design, chapter 4 (Scott et al. 2005). FIA's sample design is based on 2 phases: the first phase uses remotely-sensed data to stratify the land area to increase precision of estimates; while the 2nd phase obtains photo and ground observations and measurements for a suite of information across a hexagonal grid, each approximately 6000 acres in size. The associated estimators and variance estimators are used for area and tree attribute totals with the assumption of a simple random, stratified design and double sampling for stratification. Adjustment factors are calculated by estimation unit and strata to account for nonsampled (nonresponse) conditions.
Functions include non-ratio estimators for area and tree estimates by domain and ratio-of-means estimators for per-acre and per-tree estimates within domain. In addition, `FIESTA` adjusts for nonsampled conditions, supports post-stratification for reducing variance, and reports by estimation unit or a summed combination of estimation units. Output from the Green-Book module was tested and compared to output from FIA's publicly-available online tool ([EVALIDator](https://apps.fs.usda.gov/fiadb-api/evalidator)) for state-level population estimates and associated sampling errors generated from the FIA Database (FIADB).
## Objective of tutorial
The Green-Book estimators can be used with FIA's standard state-level population data (i.e, Evaluation) from the FIA database (FIADB) and also population data from a custom boundary. The population data includes a set of FIA plot data and summarized auxiliary information for post-stratification, including a table of area by estimation unit within the population, and a table of strata proportions by estimation unit. This tutorial steps through several examples using FIESTA's Green Book module, for three different populations: (POP1) an FIA standard Evaluation, Wyoming 561301; (POP2) a custom boundary with one population, Bighorn National Forest; and (POP3) a custom boundary with sub-populations, Bighorn National Forest Districts. All examples can be used with any population, standard or custom.
## GB Examples
### GB Example Data
View GB Example Data
*Example FIA plot data from FIADB*
The examples use FIA plot data from FIA Evaluation 561301, including three inventory years of field measurements in the state of Wyoming, from FIADB_1.7.2.00, last updated June 20, 2018, downloaded on June 25, 2018, and stored as internal data objects in `FIESTA`.
**Wyoming (WY), Inventory Years 2011-2013 (Evaluation 561301)**
Data Frame | Description
:-----------| :-----------------------------------------------------------------------------------
WYplt | WY plot-level data
WYcond | WY condition-level data
WYtree | WY tree-level data
*Example Auxiliary data*
Auxiliary data for state-level estimates, including plot-level estimation unit and stratum assignments; area by estimation unit; and pixel counts by strata class and estimation unit, were downloaded from FIADB at the same time, from the same FIA Evaluation (i.e., 561301), and stored as internal data objects in `FIESTA`. Estimates using auxiliary data from FIADB can be compared with EVALIDator estimates, using the 2013 evaluation (https://apps.fs.usda.gov/fiadb-api/evalidator).
Auxiliary data for the custom boundaries are summarized from spatial layers stored as external objects in FIESTA, originating from the USDA Forest Service, Automated Lands Program (ALP; 2018) and from a 250m resolution, Moderate Resolution Imaging Spectroradiometer (MODIS), classified map, reclassified from 3 to 2 classes: 1:forest; 2:nonforest (Ruefenacht et al. 2008)
**Wyoming (WY), Auxiliary data from FIADB (Evaluation 561301)**
Data Frame | Description
:-----------| :-----------------------------------------------------------------------------------
WYpltassgn | WY plot-level data with strata and estimation unit assignments
WYunitarea | WY estimation unit look-up table with total acres by estimation unit (ESTUNIT)
WYstratalut | WY strata look-up table with pixel counts (P1POINTCNT) by strata and estimation unit
**Wyoming (WY), Auxiliary data from other sources**
External data | Description
:-------------------------| :------------------------------------------------------------------------
WYbighorn_adminbnd.shp | Polygon shapefile of WY Bighorn National Forest Administrative boundary^1^
WYbighorn_districtbnd.shp | Polygon shapefile of WY Bighorn National Forest District boundaries^2^
WYbighorn_forest_nonforest_250m.tif| GeoTIFF raster of predicted forest/nonforest (1/0)^3^
^1^USDA Forest Service, Automated Lands Program (ALP). 2018. S_USA.AdministrativeForest (http://data.fs.usda.gov/geodata/edw). Description: An area encompassing all the National Forest System lands administered by an administrative unit. The area encompasses private lands, other governmental agency lands, and may contain National Forest System lands within the proclaimed boundaries of another administrative unit. All National Forest System lands fall within one and only one Administrative Forest Area.
^2^USDA Forest Service, Automated Lands Program (ALP). 2018. S_USA.RangerDistrict (http://data.fs.usda.gov/geodata/edw). Description: A depiction of the boundary that encompareasses a Ranger District.
^3^Based on 250m resolution, Moderate Resolution Imaging Spectroradiometer (MODIS), classified map, reclassified from 3 to 2 classes: 1:forest; 2:nonforest. Projected in Albers Conical Equal Area, Datum NAD27 (Ruefenacht et al. 2008).
### Set up
First, you'll need to load the `FIESTA` library:
```{r, warning = F, message = F}
library(FIESTA)
```
Next, you'll need to set up an "outfolder". This is just a file path to a folder where you'd like `FIESTA` to send your data output. For this vignette, we have saved our outfolder file path as the `outfolder` object in a temporary directory. We also set a few default options preferred for this vignette.
```{r}
outfolder <- tempdir()
```
### Get auxiliary data for custom examples
Now, we need to get the auxiliary data for the custom boundaries. The FIESTA *spGetStrata* function is a spatial wrapper function to facilitate extraction and summary of user-defined spatial data used for post-stratification. The function uses the FIESTA *spExtractPoly* and *spExtractRast* functions to subset (i.e., clip) plots to the boundary and extract values from estimation unit (i.e., polygon) and strata values (i.e., raster) to plot center locations, respectively. Other internal spatial functions calculate stratum pixel counts and area by estimation unit. If a polygon strata layer is given, the FIESTA *spPoly2Rast* function converts the polygon layer to raster before calculating strata weights.
Our custom examples demonstrate how to get data for one area of interest, or population (e.g, Bighorn National Forest) and for one area of interest, with multiple estimation units, or subpopulations (e.g., Bighorn National Forest Districts).
**Bighorn National Forest**
View Getting Strata Data
```{r}
# File names for spatial layers, stored as external data objects in FIESTA.
WYbhfn <- system.file("extdata", "sp_data/WYbighorn_adminbnd.shp", package="FIESTA")
fornffn <- system.file("extdata", "sp_data/WYbighorn_forest_nonforest_250m.tif", package="FIESTA")
# Get estimation unit and strata information for Bighorn National Forest.
stratdat.bh <- spGetStrata(
xyplt = WYplt,
uniqueid = "CN",
unit_layer = WYbhfn,
strat_layer = fornffn,
spMakeSpatial_opts = list(xvar = "LON_PUBLIC",
yvar = "LAT_PUBLIC",
xy.crs = 4269)
)
## Get names of output list components
names(stratdat.bh)
## Plot assignment of strata and estimation unit (ONEUNIT, STRATUMCD)
head(stratdat.bh$pltassgn)
## Area by estimation unit
stratdat.bh$unitarea
## Pixel counts and strata weights (strwt) by strata and estimation unit
stratdat.bh$stratalut
## Variable names
stratdat.bh$unitvar # Estimation unit variable
stratdat.bh$strvar # Strata variable
stratdat.bh$areavar # Area variable
```
**Bighorn National Forest Districts**
View Getting Strata Data (Districts)
```{r}
# File names for external spatial data
WYbhdistfn <- system.file("extdata", "sp_data/WYbighorn_districtbnd.shp", package="FIESTA")
WYbhdist.att <- "DISTRICTNA"
fornffn <- system.file("extdata", "sp_data/WYbighorn_forest_nonforest_250m.tif", package="FIESTA")
# Get estimation unit and strata information for Bighorn National Forest Districts
stratdat.bhdist <- spGetStrata(
xyplt = WYplt,
uniqueid = "CN",
unit_layer=WYbhdistfn,
unitvar=WYbhdist.att,
strat_layer=fornffn,
spMakeSpatial_opts = list(xvar = "LON_PUBLIC",
yvar = "LAT_PUBLIC",
xy.crs = 4269)
)
## Get names of output list components
names(stratdat.bhdist)
## Plot assignment of strata and estimation unit (DISTRICTNA, STRATUMCD)
head(stratdat.bhdist$pltassgn)
## Area by estimation units (Districts)
stratdat.bhdist$unitarea
## Pixel counts and strata weights (strwt) by strata and estimation unit
stratdat.bhdist$stratalut
## Variable names
stratdat.bhdist$unitvar # Estimation unit variable
stratdat.bhdist$strvar # Strata variable
stratdat.bhdist$areavar # Area variable
```
### GB Module
* [modGBpop()](#modGBpop)
* [modGBarea()](#modGBarea)
* [modGBtree()](#modGBtree)
* [modGBratio()](#modGBratio)
### modGBpop()
`FIESTA`'s population functions (`mod*pop`) check input data and perform population-level calculations, such as: summing number of sampled plots; adjusting for partial nonresponse; and standardizing auxiliary data. These functions are specific to each `FIESTA` module and are run prior to or within a module for any population of interest.
For `FIESTA`'s GB Module, the `modGBpop` function calculates and outputs: number of plots, adjustment factors, and an expansion factor by strata. The outputs are similar to data found in FIADB's pop_stratum table. The output from `modGBpop` can be used for one or more estimates from `modGBarea`, `modGBtree`, or `modGBratio` functions.
#### POP1: FIADB POPULATION - Get population data for area and tree estimates for Wyoming, using post-stratification
View Example
In this example, we use the sample Wyoming data (2013 Evaluation) stored in `FIESTA` to generate population data for the GB module. We check this output with the FIADB pop_stratum table from FIA DataMart for 561301 Evalid, using the `FIESTA::DBqryCSV` function.
```{r, results = FALSE, message = F}
GBpopdat <- modGBpop(
popTabs = list(cond = FIESTA::WYcond, # FIA plot/condition data
tree = FIESTA::WYtree, # FIA tree data
seed = FIESTA::WYseed), # FIA seedling data
popTabIDs = list(cond = "PLT_CN"), # unique ID of plot in cond
pltassgn = FIESTA::WYpltassgn, # plot assignments
pltassgnid = "CN", # unique ID of plot in pltassgn
pjoinid = "PLT_CN", # plot id to join to pltassgn
unitarea = WYunitarea, # area by estimation units
unitvar = "ESTN_UNIT", # name of estimation unit
strata = TRUE, # if using post-stratification
stratalut = WYstratalut, # strata classes and pixels counts
strata_opts = strata_options(getwt = TRUE) # strata options
)
```
To get the names of the list components associated with the output of our call of `modGBpop`, we run the following code:
```{r, results = T}
names(GBpopdat)
```
From this list outputted by `GBpopdat` we can access many things. Some examples include the number of plots by plot status that can be accessed with the `plotsampcnt` item, the number of conditions by condition status with `condsampcnt`, the strata-level population data, including number of plots and adjustment factors with `stratalut`, and the adjustment factors added to the condition-level, tree-level, and seedling data with `condx`, `treex`, and `seedx`, respectfully. These objects can be seen below:
```{r}
## Look at output from GBpopdat
GBpopdat$plotsampcnt # Number of plots by plot status
GBpopdat$condsampcnt # Number of conditions by condition status
# Strata-level population data, including number of plots and adjustment factors
GBpopdat$stratalut
## Adjustment factors added to condition-level data
GBpopdat$condx
## Adjustment factors added to tree data
GBpopdat$treex
## Adjustment factors added to seedling data
GBpopdat$seedx
```
One may also want to compare `FIESTA` output with FIADB pop_stratum table for WY in the 2013 evaluation to check for consistency. The can be done as follows:
```{r, results = TRUE, eval = FALSE}
qry <- "select estn_unit, stratumcd, p1pointcnt, p2pointcnt, expns,
adj_factor_macr, adj_factor_subp, adj_factor_micr from pop_stratum
where evalid = 561301 order by estn_unit, stratumcd"
pop_stratum <- tryCatch(
DBqryCSV(
qry,
states="Wyoming",
sqltables="pop_stratum"
),
error=function(e) {
return(NULL) })
if (!is.null(pop_stratum)) {
head(pop_stratum)
}
head(GBpopdat$stratalut)
```
#### POP2: CUSTOM POPULATION - Get population data for area and tree estimates for the Bighorn National Forest, using post-stratification
View Example
In this example, we use the sample WY plot data (2013 Evaluation) in FIESTA and output from `spGetStrata` to generate population data for the Bighorn National Forest. Here, we have only one estimation unit within the population of interest (i.e., Bighorn National Forest), therefore strata and pixel counts are summarized to the population.
If the `FIESTA::spGetStrata` function is used to obtain stratification data, the output list object can be input directly into `modGBpop` through the `GBstratdat` parameter. If other methods are used, the data are input through individual parameters.
```{r, results = FALSE, message = F}
```
```{r}
## Bighorn National Forest
## Using output list from spGetStrata()
GBpopdat.bh <- modGBpop(
popTabs=list(plt=WYplt, cond=WYcond, tree=WYtree, seed=WYseed),
stratdat=stratdat.bh)
## Get names of output list components
names(GBpopdat.bh)
## Using output as individual parameter inputs
GBpopdat.bh <- modGBpop(
popTabs=list(plt=WYplt, cond=WYcond, tree=WYtree, seed=WYseed),
popTabIDs=list(plt="CN"),
pltassgn=stratdat.bh$pltassgn,
pltassgnid="CN",
unitvar=stratdat.bh$unitvar,
unitarea=stratdat.bh$unitarea,
areavar=stratdat.bh$areavar,
strata=TRUE,
stratalut=stratdat.bh$stratalut,
strvar=stratdat.bh$strvar
)
## Get names of output list components
names(GBpopdat.bh)
## Condition information with adjusted condition proportions for area
head(GBpopdat.bh$condx)
## Tree information with tree-level adjustment factors
head(GBpopdat.bh$treex)
## Seedling information with adjustment factors
head(GBpopdat.bh$seedx)
## Strata-level information, including number of plots by strata and strata-level adjustment factors
GBpopdat.bh$stratalut
```
#### POP3: CUSTOM SUB-POPULATIONS - Get sub-population data for area and tree estimates for the Bighorn National Forest Districts, using post-stratification
View Example
In this example, we use the sample Wyoming plot data (2013 Evaluation) stored in FIESTA and output from `spGetStrata` to generate sub-population data for Bighorn National Forest Districts. Here, we have more than one estimation unit (i.e., sub-population) within the population of interest (i.e., Bighorn National Forest Districts), therefore strata and pixel counts are summarized by each District within the population.
If the `FIESTA::spGetStrata` function is used to obtain stratification data, the output list object can be input directly into `modGBpop` through the `GBstratdat` parameter. If other methods are used, the data are input through individual parameters.
```{r, results = FALSE, message = F}
```
```{r}
## Bighorn National Forest District
## Using output list from spGetStrata()
GBpopdat.bhdist <- modGBpop(
popTabs=list(plt=WYplt, cond=WYcond, tree=WYtree, seed=WYseed),
stratdat=stratdat.bhdist)
## Get names of output list components
names(GBpopdat.bhdist)
GBpopdat.bhdist <- modGBpop(
popTabs=list(plt=WYplt, cond=WYcond, tree=WYtree, seed=WYseed),
pltassgn=stratdat.bhdist$pltassgn,
pltassgnid="CN",
unitvar=stratdat.bhdist$unitvar,
unitarea=stratdat.bhdist$unitarea,
areavar=stratdat.bhdist$areavar,
strata=TRUE,
stratalut=stratdat.bhdist$stratalut,
strvar=stratdat.bhdist$strvar
)
## Get names of output list components
names(GBpopdat.bhdist)
## Condition information with adjusted condition proportions for area
head(GBpopdat.bhdist$condx)
## Tree information with tree-level adjustment factors
head(GBpopdat.bhdist$treex)
## Seedling information with adjustment factors
head(GBpopdat.bhdist$seedx)
## Strata-level information, including number of plots by strata and strata-level adjustment factors
GBpopdat.bhdist$stratalut
```
#### POP4: FIADB POPULATION - Get population data for area and tree estimates for Rhode Island, using post-stratification, with data stored in a SQLite database
View Example
In this example, we use the sample Rhode Island data (441901 Evaluation) stored in a SQLite database as external data in `FIESTA`. Data were extracted from the FIA database on June 6, 2022. All output can be compared with output from other FIA tools.
First, let's look at the SQLite database. Use the DBI package explore the contents.
```{r, results = FALSE, message = F}
SQLitefn <- system.file("extdata", "FIA_data/RIdat_eval2019.db", package="FIESTA")
conn <- DBI::dbConnect(RSQLite::SQLite(), SQLitefn)
DBI::dbListTables(conn)
DBI::dbDisconnect(conn)
```
```{r, results = FALSE, message = F}
GBpopdat.RI <- modGBpop(popTabs = list(plt="plot", cond="cond", tree="tree", seed="seed"),
dsn = SQLitefn,
pltassgn = "pop_plot_stratum_assgn",
stratalut = "pop_stratum",
unitarea = "pop_estn_unit",
unitvar = "ESTN_UNIT",
areavar = "AREA_USED",
strata_opts = list(getwt=TRUE, getwtvar="P1POINTCNT")
)
names(GBpopdat.RI)
# Strata-level population data, including number of plots and adjustment factors
GBpopdat.RI$stratalut
```
### modGBarea()
`FIESTA`'s `modGBarea` function generates acre estimates by domain (e.g., Forest type). Calculations are based on Scott et al. 2015 ('Green-Book') for mapped forest inventory plots. The non-ratio estimator for estimating area by stratum and domain is used. Plots that are totally nonsampled are excluded from the estimation dataset. Next, an adjustment factor is calculated by strata to adjust for nonsampled (nonresponse) conditions that have proportion less than 1. The attribute is the proportion of the plot which is divided by the adjustment factor, and averaged by stratum. Strata means are combined using the strata weights and then expanded to acres using the total land area in the population.
If there are more than one estimation unit (i.e., subpopulation) within the population, estimates are generated by estimation unit. If `sumunits=TRUE`, the estimates and percent standard errors returned are a sum combination of all estimation units. If `rawdata=TRUE`, the raw data returned will include estimates by estimation unit.
Parameters defined in the following examples are organized by category: population data (pop); estimation information (est); and output details (out).
#### POP1: 1.1 Area of forest land, Wyoming, 2011-2013
View Example
Using the `modGBarea` function we generate estimates by estimation unit (i.e., ESTN_UNIT) and sum to population (i.e., WY). `FIESTA` then returns raw data for area of forest land, Wyoming, 2011-2013 (sum estimation units). Note that we set some options for our table output with the `table_opts` argument. For a full list of possible table options, you can run `help(table_options)`.
The following estimates match output from [EVALIDator](https://apps.fs.usda.gov/fiadb-api/evalidator) using the WY 2013 Evaluation.
```{r}
area1.1 <- modGBarea(
GBpopdat = GBpopdat, # pop - population calculations for WY, post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = TRUE # est - sum estimation units to population
)
```
To get the names of the list components associated with the output of our call of `modGBarea`, we run the following code:
```{r, results = T}
names(area1.1)
```
To easily access our estimate and percent sampling error of estimate we can just grab the `est` object from out outputted list:
```{r, results = T}
area1.1$est
```
We can also look at raw data and titles for estimate, as shown below:
```{r, results = TRUE}
## Raw data (list object) for estimate
raw1.1 <- area1.1$raw # extract raw data list object from output
names(raw1.1)
head(raw1.1$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT)
raw1.1$totest # estimates for population (i.e., WY)
```
#### POP1: 1.2 Area by forest type on forest land, Wyoming, 2011-2013
View Example
In this example, we look at adding rows to the output and include returntitle=TRUE to return title information.
```{r}
## Area of forest land by forest type, Wyoming, 2011-2013
area1.2 <- modGBarea(
GBpopdat = GBpopdat, # pop - population calculations for WY, post-stratification
landarea = "FOREST", # est - forest land filter
rowvar = "FORTYPCD", # est - row domain
sumunits = TRUE, # est - sum estimation units to population
returntitle = TRUE # out - return title information
)
```
Again, we can look at the contents of the output list. The output now includes titlelst, a list of associated titles.
```{r}
names(area1.2)
```
And the estimates:
```{r}
## Estimate and percent sampling error of estimate
area1.2$est
```
Along with raw data and titles:
```{r}
## Raw data (list object) for estimate
raw1.2 <- area1.2$raw # extract raw data list object from output
names(raw1.2)
head(raw1.2$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT)
raw1.2$totest # estimates for population (i.e., WY)
head(raw1.2$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT)
head(raw1.2$rowest) # estimates by row for population (i.e., WY)
## Titles (list object) for estimate
titlelst1.2 <- area1.2$titlelst
names(titlelst1.2)
titlelst1.2
```
#### POP1: 1.3 Area by forest type and stand-size class on forest land, Wyoming, 2011-2013
View Example
In this example, we look at adding rows and columns to output, including FIA names. We also output estimates and percent standard error in the same cell with the `allin1` argument in `table_options` and save data to an outfolder with the `outfolder` argument in `savedata_options`.
```{r}
## Area of forest land by forest type and stand-size class, Wyoming, 2011-2013
area1.3 <- modGBarea(
GBpopdat = GBpopdat, # pop - population calculations for WY, post-stratification
landarea = "FOREST", # est - forest land filter
rowvar = "FORTYPCD", # est - row domain
colvar = "STDSZCD", # est - column domain
sumunits = TRUE, # est - sum estimation units to population
savedata = TRUE, # out - save data to outfolder
returntitle = TRUE, # out - return title information
table_opts = list(
row.FIAname = TRUE, # table - row domain names
col.FIAname = TRUE, # table - column domain names
allin1 = TRUE # table - return output with est(pse)
),
savedata_opts = list(
outfolder = outfolder, # save - outfolder for saving data
outfn.pre = "WY" # save - prefix for output files
)
)
```
We can again look at the output list, estimates, raw data, and titles:
```{r}
## Look at output list
names(area1.3)
## Estimate and percent sampling error of estimate
head(area1.3$est)
## Raw data (list object) for estimate
raw1.3 <- area1.3$raw # extract raw data list object from output
names(raw1.3)
head(raw1.3$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$totest) # estimates for population (i.e., WY)
head(raw1.3$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$rowest) # estimates by row for population (i.e., WY)
head(raw1.3$unit_colest) # estimates by column, by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$colest) # estimates by column for population (i.e., WY)
head(raw1.3$unit_grpest) # estimates by row and column, by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$grpest) # estimates by row and column for population (i.e., WY)
## Titles (list object) for estimate
titlelst1.3 <- area1.3$titlelst
names(titlelst1.3)
titlelst1.3
## List output files in outfolder
list.files(outfolder, pattern = "WY_area")
list.files(paste0(outfolder, "/rawdata"), pattern = "WY_area")
```
#### POP2: 2.1 Area by forest type and stand-size class, Bighorn National Forest
View Example
Note: Since we only have one estimation unit within the population of interest, we set sumunits=FALSE.
Also, we add ref.title to customize the title outputs.
```{r}
area2.1 <- modGBarea(
GBpopdat = GBpopdat.bh, # pop - population calculations for Bighorn NF, post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = FALSE, # est - sum estimation units to population
rowvar = "FORTYPCD", # est - row domain
colvar = "STDSZCD", # est - column domain
returntitle = TRUE, # out - return title information
title_opts = list(
title.ref = "Bighorn National Forest, 2011-2013" # title - customize title reference
),
table_opts = list(
row.FIAname = TRUE, # table - return FIA row names
col.FIAname = TRUE # table - return FIA column names
)
)
```
To get the names of the list components associated with the output of our call of `modGBarea`, we run the following code:
```{r, results = T}
names(area2.1)
```
To easily access our estimate and percent sampling error of estimate we can just grab the `est` object from our ouputted list:
```{r, results = T}
area2.1$est
```
We can also look at raw data and titles for estimate, as shown below. Note the change in titles.
```{r, results = TRUE}
## Raw data (list object) for estimate
raw2.1 <- area2.1$raw # extract raw data list object from output
names(raw2.1)
head(raw2.1$unit_grpest) # estimates by row and group domains
## Titles (list object) for estimate
titlelst2.1 <- area2.1$titlelst
names(titlelst2.1)
titlelst2.1
```
#### POP2: 2.2 Area by forest type group and primary disturbance class, Bighorn National Forest
View Example
Note: Since we only have one estimation unit within the population of interest, we set sumunits=FALSE.
Let's also add a few more table options to control the forest type groups displayed in the table (rowlut) and fill the NULL values with 0s (estnull).
```{r}
area2.2 <- modGBarea(
GBpopdat = GBpopdat.bh, # pop - population calculations for Bighorn NF, post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
rowvar = "FORTYPGRPCD", # est - row domain
colvar = "DSTRBCD1", # est - column domain
returntitle = TRUE, # out - return title information
title_opts = list(
title.ref = "Bighorn National Forest, 2011-2013" # title - customize title reference
),
table_opts = list(
row.FIAname = TRUE, # table - return FIA row names
col.FIAname = TRUE, # table - return FIA column names
estnull = 0,
rowlut = c(180, 200, 220, 260, 280, 900, 999),
raw.keep0 = TRUE
)
)
```
To get the names of the list components associated with the output of our call of `modGBarea`, we run the following code:
```{r, results = T}
names(area2.2)
```
To easily access our estimate and percent sampling error of estimate we can just grab the `est` object from our ouputted list:
```{r, results = T}
area2.2$est
```
We can also look at raw data and titles for estimate, as shown below. Note the change in titles.
```{r, results = TRUE}
## Raw data (list object) for estimate
raw2.2 <- area2.2$raw # extract raw data list object from output
names(raw2.2)
head(raw2.2$unit_grpest) # estimates by row and group domains
## Titles (list object) for estimate
titlelst2.2 <- area2.2$titlelst
names(titlelst2.2)
titlelst2.2
```
#### POP3: 3.1 Area by forest type group and primary disturbance class, Bighorn National Forest Districts
View Example
In this example, we add a filter to remove from the table output, where there is no visible disturbance. This filter does not change the population data set the estimates are derived from, it only changes the output.
```{r}
area3.1 <- modGBarea(
GBpopdat = GBpopdat.bhdist, # pop - population calculations for Bighorn NF, post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
pcfilter = "DSTRBCD1 > 0", # est - condition filter for table output
rowvar = "FORTYPGRPCD", # est - row domain
colvar = "DSTRBCD1", # est - column domain
returntitle = TRUE, # out - return title information
title_opts = list(
title.ref = "Bighorn National Forest, 2011-2013" # title - customize title reference
),
table_opts = list(
row.FIAname = TRUE, # table - return FIA row names
col.FIAname = TRUE # table - return FIA column names
)
)
```
To get the names of the list components associated with the output of our call of `modGBarea`, we run the following code:
```{r, results = T}
names(area3.1)
```
To easily access our estimate and percent sampling error of estimate we can just grab the `est` object from our ouputted list:
```{r, results = T}
area3.1$est
```
We can also look at raw data and titles for estimate, as shown below:
```{r, results = TRUE}
## Raw data (list object) for estimate
raw3.1 <- area3.1$raw # extract raw data list object from output
names(raw3.1)
head(raw3.1$unit_rowest) # estimates by estimation unit for row domains
raw3.1$rowest # estimates for population for row domains
head(raw3.1$unit_colest) # estimates by estimation unit for column domains
raw3.1$colest # estimates for population for column domains
## Titles (list object) for estimate
titlelst3.1 <- area3.1$titlelst
names(titlelst3.1)
titlelst3.1
```
#### POP4: 4.1 Area by forest type group and stand-size class, Rhode Island, 2019
View Example
Note: estimates should match other FIA tools.
```{r}
area4.1 <- modGBarea(
GBpopdat = GBpopdat.RI, # pop - population calculations for Bighorn NF, post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
rowvar = "FORTYPCD", # est - row domain
colvar = "STDSZCD", # est - column domain
returntitle = TRUE, # out - return title information
table_opts = list(
row.FIAname = TRUE, # table - return FIA row names
col.FIAname = TRUE # table - return FIA column names
)
)
```
To get the names of the list components associated with the output of our call of `modGBarea`, we run the following code:
```{r, results = T}
names(area4.1)
```
To easily access our estimate and percent sampling error of estimate we can just grab the `est` object from our ouputted list:
```{r, results = T}
area4.1$est
```
We can also look at raw data and titles for estimate, as shown below. Note the change in titles.
```{r, results = TRUE}
## Raw data (list object) for estimate
raw4.1 <- area4.1$raw # extract raw data list object from output
names(raw4.1)
head(raw4.1$unit_grpest) # estimates by row and group domains
## Titles (list object) for estimate
titlelst4.1 <- area4.1$titlelst
names(titlelst4.1)
titlelst4.1
```
### modGBtree
`FIESTA`'s `modGBtree` function generates tree estimates by domain (e.g., Forest type) and/or tree domain (e.g., Species). Calculations are based on Scott et al. 2005 ('the green-book') for mapped forest inventory plots. The non-ratio estimator for estimating tree attributes by stratum and domain is used. Plots that are totally nonsampled are excluded from estimation dataset. Next, an adjustment factor is calculated by strata to adjust for nonsampled (nonresponse) conditions that have proportion less than 1. Attributes adjusted to a per-acre value are summed by plot, divided by the adjustment factor, and averaged by stratum. Strata means are combined using the strata weights and then expanded to using the total land area in the population.
If there are more than one estimation unit (i.e., subpopulation) within the population, estimates are generated by estimation unit. If `sumunits = TRUE`, the estimates and percent standard errors returned are a sum combination of all estimation units. If `rawdata = TRUE`, the raw data returned will include estimates by estimation unit.
Parameters defined in the following examples are organized by category: population data (pop); estimation information (est); and output details (out).
The following reference table can be used for defining `estvar` and `estvar.filter`:
```{r}
FIESTAutils::ref_estvar[, c("ESTTITLE", "ESTVAR", "ESTFILTER", "ESTUNITS")]
```
#### POP1: 1.1 Net cubic-foot volume of live trees, Wyoming, 2011-2013
View Example
Now, we can generate estimates by estimation unit (i.e., ESTN_UNIT) and sum to population (i.e., WY) with `modGBtree`:
```{r}
## Return raw data and titles
## Total net cubic-foot volume of live trees (at least 5 inches diameter), Wyoming, 2011-2013
tree1.1 <- modGBtree(
GBpopdat = GBpopdat, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "VOLCFNET", # est - net cubic-foot volume
estvar.filter = "STATUSCD == 1", # est - live trees only
returntitle = TRUE # out - return title information
)
```
We can now take a look at the output list, estimates and percent sampling errors, raw data, and titles:
```{r}
## Look at output list
names(tree1.1)
## Estimate and percent sampling error of estimate
tree1.1$est
## Raw data (list object) for estimate
raw1.1 <- tree1.1$raw # extract raw data list object from output
names(raw1.1)
head(raw1.1$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT)
head(raw1.1$totest) # estimates for population (i.e., WY)
## Titles (list object) for estimate
titlelst1.1 <- tree1.1$titlelst
names(titlelst1.1)
titlelst1.1
```
#### POP1: 1.2 Net cubic-foot volume of live trees by forest type, Wyoming, 2011-2013
View Example
This example adds rows to the output for net cubic-foot volume of live trees (at least 5 inches diameter) by forest type, Wyoming, 2011-2013. We also choose to return titles with `returntitle = TRUE`.
```{r}
tree1.2 <- modGBtree(
GBpopdat = GBpopdat, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "VOLCFNET", # est - net cubic-foot volume
estvar.filter = "STATUSCD == 1", # est - live trees only
rowvar = "FORTYPCD", # est - row domain
returntitle = TRUE # out - return title information
)
```
Again, we investigate the output of the returned list:
```{r}
## Look at output list
names(tree1.2)
## Estimate and percent sampling error of estimate
tree1.2$est
## Raw data (list object) for estimate
raw1.2 <- tree1.2$raw # extract raw data list object from output
names(raw1.2)
head(raw1.2$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT)
head(raw1.2$totest) # estimates for population (i.e., WY)
head(raw1.2$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT)
head(raw1.2$rowest) # estimates by row for population (i.e., WY)
## Titles (list object) for estimate
titlelst1.2 <- tree1.2$titlelst
names(titlelst1.2)
titlelst1.2
```
We can also create a simple barplot from the output:
```{r}
## Create barplot
datBarplot(
raw1.2$unit_rowest,
xvar = titlelst1.2$title.rowvar,
yvar = "est"
)
```
And a fancier barplot:
```{r}
## Create fancier barplot
datBarplot(
raw1.2$unit_rowest,
xvar = titlelst1.2$title.rowvar,
yvar = "est",
errbars = TRUE,
sevar = "est.se",
main = FIESTAutils::wraptitle(titlelst1.2$title.row, 75),
ylabel = titlelst1.2$title.yvar,
divideby = "million"
)
```
#### POP1: 1.3 Net cubic-foot volume of live trees by forest type and stand-size class, Wyoming, 2011-2013
View Example
This examples adds rows and columns to the output, including FIA names, for net cubic-foot volume of live trees (at least 5 inches diameter) by forest type and stand-size class, Wyoming, 2011-2013. We also use the `*_options` functions to return output with estimates (est) and percent standard error (pse) in same cell - est(pse) with `allin1 = TRUE` and save data to an outfolder with `savedata = TRUE` and `outfolder = outfolder`.
```{r}
tree1.3 <- modGBtree(
GBpopdat = GBpopdat, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "VOLCFNET", # est - net cubic-foot volume
estvar.filter = "STATUSCD == 1", # est - live trees only
rowvar = "FORTYPCD", # est - row domain
colvar = "STDSZCD", # est - column domain
returntitle = TRUE, # out - return title information
savedata = TRUE, # out - save data to outfolder
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
col.FIAname = TRUE, # est - column domain names
allin1 = TRUE # out - return output with est(pse)
),
savedata_opts = savedata_options(
outfolder = outfolder, # out - outfolder for saving data
outfn.pre = "WY" # out - prefix for output files
)
)
```
Again, we investigate the output of the returned list:
```{r}
## Look at output list from modGBarea()
names(tree1.3)
## Estimate and percent sampling error of estimate
tree1.3$est
## Raw data (list object) for estimate
raw1.3 <- tree1.3$raw # extract raw data list object from output
names(raw1.3)
head(raw1.3$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$totest) # estimates for population (i.e., WY)
head(raw1.3$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$rowest) # estimates by row for population (i.e., WY)
head(raw1.3$unit_colest) # estimates by column, by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$colest) # estimates by column for population (i.e., WY)
head(raw1.3$unit_grpest) # estimates by row and column, by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$grpest) # estimates by row and column for population (i.e., WY)
## Titles (list object) for estimate
titlelst1.3 <- tree1.3$titlelst
names(titlelst1.3)
titlelst1.3
## List output files in outfolder
list.files(outfolder, pattern = "WY_tree")
list.files(paste0(outfolder, "/rawdata"), pattern = "WY_tree")
```
#### POP1: 1.4 Number of live trees by species, Wyoming, 2011-2013
View Example
We can use tree domain in estimation output rows:
```{r}
## Number of live trees (at least 1 inch diameter) by species
tree1.4 <- modGBtree(
GBpopdat = GBpopdat, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "TPA_UNADJ", # est - number of trees per acre
estvar.filter = "STATUSCD == 1", # est - live trees only
rowvar = "SPCD", # est - row domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE # out - return output with est and pse
)
)
```
We can also look at the output list and estimates again:
```{r}
## Look at output list
names(tree1.4)
## Estimate and percent sampling error of estimate
tree1.4$est
```
#### POP1: 1.5 Number of live trees (plus seedlings) by species, Wyoming, 2011-2013
View Example
We can also add seedlings.
Note: seedling data are only available for number of trees (estvar = TPA_UNADJ).
Note: must include seedling data in population data calculations.
```{r}
## Number of live trees by species, including seedlings
tree1.5 <- modGBtree(
GBpopdat = GBpopdat, # pop - population calculations
estseed = "add", # est - add seedling data
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "TPA_UNADJ", # est - number of trees per acre
estvar.filter = "STATUSCD == 1", # est - live trees only
rowvar = "SPCD", # est - row domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE, # out - return output with est and pse
)
)
```
And again we can look at our outputs and compare estimates:
```{r}
## Look at output list
names(tree1.5)
## Estimate and percent sampling error of estimate
tree1.5$est
## Compare estimates with and without seedlings
head(tree1.4$est)
head(tree1.5$est)
```
#### POP1: 1.6 Number of seedlings by species, Wyoming, 2011-2013
View Example
Of course, we can also look at *only* seedlings.
Note: seedling data are only available for number of trees (estvar = TPA_UNADJ).
Note: must include seedling data in population data calculations.
```{r}
## Number of live trees seedlings by species
tree1.6 <- modGBtree(
GBpopdat = GBpopdat, # pop - population calculations
estseed = "only", # est - add seedling data
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "TPA_UNADJ", # est - number of trees per acre
rowvar = "SPCD", # est - row domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE # out - return output with est and pse
)
)
```
And again we can look at our outputs and compare estimates:
```{r}
## Look at output list
names(tree1.6)
## Estimate and percent sampling error of estimate
tree1.6$est
## Compare estimates with, without, and only seedlings
head(tree1.4$est)
head(tree1.5$est)
head(tree1.6$est)
```
#### POP2: 2.1 Number of live trees by forest type and species on forest land, Bighorn National Forest
View Example
We can also use tree domain in estimation output columns:
```{r}
## First, we can save our table options for the next few examples
tab_opts <- table_options(
row.FIAname = TRUE, # est - row domain names
col.FIAname = TRUE, # est - column domain names
allin1 = TRUE # out - return output with est(pse)
)
## Number of live trees (at least 1 inch diameter) by forest type and species
tree2.1 <- modGBtree(
GBpopdat = GBpopdat.bh, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "TPA_UNADJ", # est - number of trees per acre
estvar.filter = "STATUSCD == 1", # est - live trees only
rowvar = "FORTYPCD", # est - row domain
colvar = "SPCD", # est - column domain
returntitle = TRUE, # out - return title information
table_opts = tab_opts
)
tree2.1$est
```
And we can see our output:
```{r}
## Look at output list
names(tree2.1)
## Estimate and percent sampling error of estimate
head(tree2.1$est)
```
#### POP2: 2.2 Net cubic-foot volume of standing dead trees by species and cause of death on forest land, Bighorn National Forest
View Example
We can also examine dead trees with the filter `estvar.filter = "STATUSCD == 2 & STANDING_DEAD_CD == 1"`.
```{r}
## Net cubic-foot volume of dead trees (at least 5 inches diameter) by species and cause of death,
## Wyoming, 2011-2013
tree2.2 <- modGBtree(
GBpopdat = GBpopdat.bh, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "VOLCFNET", # est - number of trees per acre
estvar.filter = "STATUSCD == 2 & STANDING_DEAD_CD == 1", # est - standing dead trees only
rowvar = "SPCD", # est - row domain
colvar = "AGENTCD", # est - column domain
returntitle = TRUE, # out - return title information
table_opts = tab_opts
)
```
And we can see our output of dead trees:
```{r}
## Look at output list
names(tree2.2)
## Estimate and percent sampling error of estimate
head(tree2.2$est)
```
#### Adding diameter classes to population tree data (for `modGBtree` and `modGBratio` examples 7-9)
View Example
```{r}
## Look at tree data in GBpopdat.bh
head(GBpopdat.bh$treex)
## Use reference data frame stored as an R object in FIESTA
head(FIESTAutils::ref_diacl2in)
## Appends a new column to GBpopdat$treex classifying the DIA variable based on MIN and MAX columns in ref_diacl2in
dat <- datLUTclass(x = GBpopdat.bh$treex,
xvar = "DIA",
LUT = FIESTAutils::ref_diacl2in,
LUTclassnm = "DIACL2IN")
GBpopdat.bh$treex <- dat$xLUT
## Look at tree data, with new column (DIACL2IN)
head(GBpopdat.bh$treex)
## Look at table of new diameter classes (DIACL2IN)
table(GBpopdat.bh$treex$DIACL2IN)
## Another way to append diameter classes
## First, create a new variable using cut function to define 4 diameter classes
dat <- datLUTclass(x = GBpopdat.bh$treex,
xvar = "DIA",
cutbreaks = c(0, 5, 10, 20, 100))
GBpopdat.bh$treex <- dat$xLUT
## Look at tree data, with new column (DIACL2IN)
head(GBpopdat.bh$treex)
## Look at table of new diameter classes (DIACL)
table(GBpopdat.bh$treex$DIACL)
```
#### POP2: 2.3 Number of Live Trees by Species Groups and Diameter Class on forest land, Bighorn National Forest
View Example
We can also look at the number of live trees by species group and diameter class (DIACL2IN):
```{r}
## Number of live trees by species group and diameter class (DIACL2IN)
tree2.3 <- modGBtree(
GBpopdat = GBpopdat.bh, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "TPA_UNADJ", # est - number of trees per acre
estvar.filter = "STATUSCD == 1", # est - live trees only
rowvar = "SPGRPCD", # est - row domain
colvar = "DIACL2IN", # est - column domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = TRUE # out - return output with est(pse)
)
)
```
Outputs:
```{r}
## Look at output list
names(tree2.3)
## Estimate and percent sampling error of estimate
head(tree2.3$est)
```
#### POP2: 2.4 Number of Live Trees by Species Groups and a Different Diameter Class on forest land, Bighorn National Forest
View Example
Next, we can look at number of live trees by species group and diameter class (DIACL):
```{r}
## Number of live trees by species group and diameter class (DIACL)
tree2.4 <- modGBtree(
GBpopdat = GBpopdat.bh, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "TPA_UNADJ", # est - number of trees per acre
estvar.filter = "STATUSCD == 1", # est - live trees only
rowvar = "SPGRPCD", # est - row domain
colvar = "DIACL", # est - column domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = TRUE # out - return output with est(pse)
)
)
```
Outputs:
```{r}
## Look at output list
names(tree2.4)
## Estimate and percent sampling error of estimate
head(tree2.4$est)
```
#### POP2: 2.5 Number of Live Trees (+ seedlings) by Species Groups and a Different Diameter Class on forest land, Bighorn National Forest
View Example
Finally, we add seedlings to Example 8:
```{r}
## Number of live trees by species group and diameter class (DIACL), add seedlings
tree2.5 <- modGBtree(
GBpopdat = GBpopdat.bh, # pop - population calculations
estseed = "add", # est - add seedling data
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "TPA_UNADJ", # est - number of trees per acre
estvar.filter = "STATUSCD == 1", # est - live trees only
rowvar = "SPGRPCD", # est - row domain
colvar = "DIACL", # est - column domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = TRUE # out - return output with est(pse)
)
)
```
And look at the outputs:
```{r}
## Look at output list
names(tree2.5)
## Estimate and percent sampling error of estimate
head(tree2.5$est)
```
#### POP3: 3.1 Volume of Dead Trees by Forest Type Group and Primary Disturbance on forest land, Bighorn National Forest Districts
View Example
Next, we can look at number of live trees by species group and diameter class (DIACL):
```{r}
## Number of dead trees by forest type group and primary disturbance
tree3.1 <- modGBtree(
GBpopdat = GBpopdat.bhdist, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = FALSE, # est - sum estimation units to population
estvar = "VOLCFNET", # est - number of trees per acre
estvar.filter = "STATUSCD == 2 & STANDING_DEAD_CD == 1", # est - live trees only
rowvar = "FORTYPGRPCD", # est - row domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = TRUE # out - return output with est(pse)
)
)
```
Outputs:
```{r}
## Look at output list
names(tree3.1)
## Estimate and percent sampling error of estimate
tree3.1$est
## Estimate and percent sampling error by district
tree3.1$raw$unit_rowest
```
#### POP4: 4.1 Net cubic-foot volume of live trees by forest type group and stand-size class, Rhode Island, 2019
View Example
We can also look at the number of live trees by species group and diameter class (DIACL2IN):
```{r}
## Net cubic-foot volume of live trees by forest type and stand-size class
tree4.1 <- modGBtree(
GBpopdat = GBpopdat.RI, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "VOLCFNET", # est - net cubic-foot volume estimate
estvar.filter = "STATUSCD == 1", # est - live trees only
rowvar = "FORTYPCD", # est - row domain
colvar = "STDSZCD", # est - column domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
col.FIAname = TRUE, # est - column domain names
allin1 = TRUE # out - return output with est(pse)
)
)
```
Outputs:
```{r}
## Look at output list
names(tree4.1)
## Estimate and percent sampling error of estimate
head(tree4.1$est)
```
### modGBratio
`FIESTA`'s `modGBratio` function generates per-acre and per-tree estimates by domain and/or tree domain by domain (e.g., Forest type) and/or tree domain (e.g., Species). Calculations are based on Scott et al. 2005 ('the green-book') for mapped forest inventory plots. The ratio estimator for estimating per-acre or per-tree by stratum and domain is used, referred to as Ratio of Means (ROM).
If there are more than one estimation unit (i.e., subpopulation) within the population, estimates are generated by estimation unit. If sumunits = TRUE, the estimates and percent standard errors returned are a sum combination of all estimation units. If rawdata = TRUE, the raw data returned will include estimates by estimation unit.
Parameters defined in the following examples are organized by category: population data (pop); estimation information (est); and output details (out).
#### POP1: 1.1 Net cubic-foot volume per acre of live trees on timberland, Wyoming, 2011-2013
View Example
We generate estimates by estimation unit (i.e., ESTN_UNIT) and sum to population (i.e., WY):
```{r}
## Return raw data and titles
## Total net cubic-foot volume of live trees (at least 5 inches diameter), Wyoming, 2011-2013
ratio1.1 <- modGBratio(
GBpopdat = GBpopdat, # pop - population calculations
landarea = "TIMBERLAND", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "VOLCFNET", # est - net cubic-foot volume, numerator
estvarn.filter = "STATUSCD == 1", # est - live trees only, numerator
returntitle = TRUE # out - return title information
)
```
And we can look at our output:
```{r}
## Look at output list
names(ratio1.1)
## Estimate and percent sampling error of estimate
head(ratio1.1$est)
## Raw data (list object) for estimate
raw1.1 <- ratio1.1$raw # extract raw data list object from output
names(raw1.1)
head(raw1.1$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT)
head(raw1.1$totest) # estimates for population (i.e., WY)
## Titles (list object) for estimate
titlelst <- ratio1.1$titlelst
names(titlelst)
titlelst
```
#### POP1: 1.2 Net cubic-foot volume per acre of live trees by forest type on timberland, Wyoming, 2011-2013
View Example
We can also add rows to the output:
```{r}
## Net cubic-foot volume of live trees (at least 5 inches diameter) by forest type, Wyoming, 2011-2013
## Return raw data and titles
ratio1.2 <- modGBratio(
GBpopdat = GBpopdat, # pop - population calculations
landarea = "TIMBERLAND", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "VOLCFNET", # est - net cubic-foot volume
estvarn.filter = "STATUSCD == 1", # est - live trees only
rowvar = "FORTYPCD", # est - row domain
returntitle = TRUE # out - return title information
)
```
And of course view our outputs:
```{r}
## Look at output list
names(ratio1.2)
## Estimate and percent sampling error of estimate
head(ratio1.2$est)
## Raw data (list object) for estimate
raw1.2 <- ratio1.2$raw # extract raw data list object from output
names(raw1.2)
head(raw1.2$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT)
head(raw1.2$totest) # estimates for population (i.e., WY)
head(raw1.2$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT)
head(raw1.2$rowest) # estimates by row for population (i.e., WY)
## Titles (list object) for estimate
titlelst <- ratio1.2$titlelst
names(titlelst)
titlelst
```
#### POP1: 1.3 Net cubic-foot volume per acre of live trees by forest type and stand-size class on timberland, Wyoming, 2011-2013
View Example
We can also add row and columns to output, including FIA names:
```{r}
## Return output with estimates (est) and percent standard error (pse) in same cell - est(pse)
## Save data to outfolder:
## Net cubic-foot volume of live trees (at least 5 inches diameter) by forest type and stand-size class,
## Wyoming, 2011-2013
ratio1.3 <- modGBratio(
GBpopdat = GBpopdat, # pop - population calculations
landarea = "TIMBERLAND", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "VOLCFNET", # est - net cubic-foot volume, numerator
estvarn.filter = "STATUSCD == 1", # est - live trees only, numerator
rowvar = "FORTYPCD", # est - row domain
colvar = "STDSZCD", # est - column domain
returntitle = TRUE, # out - return title information
savedata = TRUE, # out - save data to outfolder
table_opts = list(
row.FIAname = TRUE, # est - row domain names
col.FIAname = TRUE, # est - column domain names
allin1 = TRUE # out - return output with est(pse)
),
savedata_opts = list(
outfolder = outfolder, # out - outfolder for saving data
outfn.pre = "WY" # out - prefix for output files
)
)
```
And look at our output again:
```{r}
## Look at output list from modGBarea()
names(ratio1.3)
## Estimate and percent sampling error of estimate
head(ratio1.3$est)
## Raw data (list object) for estimate
raw1.3 <- ratio1.3$raw # extract raw data list object from output
names(raw1.3)
head(raw1.3$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$totest) # estimates for population (i.e., WY)
head(raw1.3$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$rowest) # estimates by row for population (i.e., WY)
head(raw1.3$unit_colest) # estimates by column, by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$colest) # estimates by column for population (i.e., WY)
head(raw1.3$unit_grpest) # estimates by row and column, by estimation unit (i.e., ESTN_UNIT)
head(raw1.3$grpest) # estimates by row and column for population (i.e., WY)
## Titles (list object) for estimate
titlelst <- ratio1.3$titlelst
names(titlelst)
titlelst
## List output files in outfolder
list.files(outfolder, pattern = "WY_ratio")
list.files(paste0(outfolder, "/rawdata"), pattern = "WY_ratio")
```
#### POP2: 2.1 Number of live trees per acre by species, Bighorn National Forest
View Example
We can also use tree domain in estimation output rows:
```{r}
## Number of live trees (at least 1 inch diameter) by species
ratio2.1 <- modGBratio(
GBpopdat = GBpopdat.bh, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "TPA_UNADJ", # est - number of trees per acre, numerator
estvarn.filter = "STATUSCD == 1", # est - live trees only, numerator
rowvar = "SPCD", # est - row domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE, # out - return output with est and pse
),
title_opts = title_options(
title.ref = "Bighorn National Forest")
)
```
And we can look at our output:
```{r}
## Look at output list
names(ratio2.1)
## Estimate and percent sampling error of estimate
head(ratio2.1$est)
```
#### POP2: 2.2 Number of live trees (plus seedlings) per acre by species, Bighorn National Forest
View Example
Now, we can add seedlings.
Note: seedling data are only available for number of trees (`estvarn = TPA_UNADJ`).
Note: must include seedling data in population data calculations.
```{r}
## Number of live trees by species, including seedlings
ratio2.2 <- modGBratio(
GBpopdat = GBpopdat.bh, # pop - population calculations
estseed = "add", # est - add seedling data
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "TPA_UNADJ", # est - number of trees per acre, numerator
estvarn.filter = "STATUSCD == 1", # est - live trees only, numerator
rowvar = "SPCD", # est - row domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE # out - return output with est and pse
),
title_opts = title_options(
title.ref = "Bighorn National Forest")
)
ratio2.2$titlelst
```
Output and comparison:
```{r}
## Look at output list
names(ratio2.2)
## Estimate and percent sampling error of estimate
head(ratio2.2$est)
## Compare estimates with and without seedlings
head(ratio2.1$est)
head(ratio2.2$est)
```
#### POP2: 2.3 Number of live seedlings per acre by species, Bighorn National Forest
View Example
We could also consider only seedlings.
Note: seedling data are only available for number of trees (`estvarn = TPA_UNADJ`).
Note: must include seedling data in population data calculations.
```{r}
## Number of live seedlings by species
ratio2.3 <- modGBratio(
GBpopdat = GBpopdat.bh, # pop - population calculations
estseed = "only", # est - add seedling data
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "TPA_UNADJ", # est - number of trees per acre, numerator
rowvar = "SPCD", # est - row domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE # out - return output with est and pse
)
)
```
Output and comparisons:
```{r}
## Look at output list
names(ratio2.3)
## Estimate and percent sampling error of estimate
head(ratio2.3$est)
## Compare estimates with, without, and only seedlings
head(ratio2.1$est)
head(ratio2.2$est)
head(ratio2.3$est)
```
#### POP2: 2.4 Number of live trees by forest type and species, Bighorn National Forest
View Example
We can also use tree domain in estimation output columns:
```{r}
## Number of live trees (at least 1 inch diameter) by forest type and species
ratio2.4 <- modGBratio(
GBpopdat = GBpopdat.bh, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "TPA_UNADJ", # est - number of trees per acre, numerator
estvarn.filter = "STATUSCD == 1", # est - live trees only, numerator
rowvar = "FORTYPCD", # est - row domain
colvar = "SPCD", # est - column domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
col.FIAname = TRUE, # est - column domain names
allin1 = TRUE # out - return output with est(pse)
)
)
```
And view our output:
```{r}
## Look at output list
names(ratio2.4)
## Estimate and percent sampling error of estimate
head(ratio2.4$est)
```
#### POP2: 2.5 Number of standing dead trees by species and cause of death, Bighorn National Forest
View Example
Next, we look at dead trees:
```{r}
## Net cubic-foot volume of dead trees (at least 5 inches diameter) by species and cause of death
ratio2.5 <- modGBratio(
GBpopdat = GBpopdat.bh, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "VOLCFNET", # est - number of trees per acre, numerator
estvarn.filter = "STATUSCD == 2 & STANDING_DEAD_CD == 1", # est - standing dead trees only, numerator
rowvar = "SPCD", # est - row domain
colvar = "AGENTCD", # est - column domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
col.FIAname = TRUE, # est - column domain names
allin1 = TRUE # out - return output with est(pse)
)
)
```
And we can see our output:
```{r}
## Look at output list
names(ratio2.5)
## Estimate and percent sampling error of estimate
head(ratio2.5$est)
```
#### POP3.1: 3.1 Number of live trees by species group and diameter class (DIACL2IN), Bighorn National Forest
View Example
We can also use tree domain in estimation output rows and columns:
```{r}
## Number of live trees by species group and diameter class (DIACL2IN)
ratio2.6 <- modGBratio(
GBpopdat = GBpopdat.bh, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "TPA_UNADJ", # est - number of trees per acre, numerator
estvarn.filter = "STATUSCD == 1", # est - live trees only, numerator
rowvar = "SPGRPCD", # est - row domain
colvar = "DIACL2IN", # est - column domain
returntitle = TRUE, # out - return title information
table_opts = list(
row.FIAname = TRUE, # est - row domain names
allin1 = TRUE # out - return output with est(pse)
),
title_opts = list(
title.ref = "Bighorn National Forest"
)
)
```
And examine our output:
```{r}
## Look at output list
names(ratio2.6)
## Estimate and percent sampling error of estimate
head(ratio2.6$est)
```
#### POP3: 3.2 Number of Live Trees per acre by Species Group and Diameter Class, Bighorn National Forest Districts
View Example
Next, we can look at the number of live trees by species group and diameter class (`DIACL`):
```{r}
ratio3.2 <- modGBratio(
GBpopdat = GBpopdat.bhdist, # pop - population calculations
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "TPA_UNADJ", # est - number of trees per acre, numerator
estvarn.filter = "STATUSCD == 1", # est - live trees only, numerator
rowvar = "SPGRPCD", # est - row domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = TRUE, # out - return output with est(pse)
),
title_opts = title_options(
title.ref="Bighorn National Forest Districts"
)
)
```
And of course examine our output:
```{r}
## Look at output list
names(ratio3.2)
## Estimate and percent sampling error of estimate
head(ratio3.2$est)
```
#### POP1: 1.4 Net cubic-foot volume of live trees (at least 5 inches diameter) divided by net cubic-foot volume of all trees by forest type, Wyoming, 2011-2013
View Example
Next, we look at tree ratios:
```{r}
## Net cubic-foot volume of live trees (at least 5 inches diameter) divided by net cubic-foot volume of all trees
## by forest type, Wyoming, 2011-2013
ratio1.4 <- modGBratio(
GBpopdat = GBpopdat, # pop - population calculations for WY, post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "VOLCFNET", # est - net cubic-foot volume, numerator
estvarn.filter = "STATUSCD == 1", # est - live trees only
estvard = "VOLCFNET", # est - net cubic-foot volume, numerator
rowvar = "FORTYPCD", # est - row domain
returntitle = TRUE, # out - return title information
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = TRUE, # out - return output with est(pse)
)
)
```
And examine the output:
```{r}
## Look at output list
names(ratio1.4)
## Estimate and percent sampling error of estimate
head(ratio1.4$est)
```
### No strata
If you want to exclude post-stratification (i.e., simple random sample, Horvitz-Thompson), you must generate a new population dataset using the `modGBpop` function by setting `strata = FALSE`.
View Code
```{r}
## Get population data for Wyoming estimates, with no post-stratification
GBpopdat.strat <- modGBpop(
popTabs = popTables(
cond = WYcond, # FIA plot/condition data
tree = WYtree, # FIA tree data
seed = WYseed), # FIA seedling data
pltassgn = WYpltassgn, # plot assignments
pltassgnid = "CN", # uniqueid of plots
unitarea = WYunitarea, # area by estimation units
unitvar = "ESTN_UNIT", # name of estimation unit
strata = TRUE, # if using post-stratification
stratalut = WYstratalut, # strata classes and pixels counts
strata_opts = list(
getwt=TRUE, # calculate strata weights
getwtvar="P1POINTCNT") # use P1POINTCNT in stratalut to calculate weights
)
## Get population data for Wyoming estimates, with no post-stratification
GBpopdat.nostrat <- modGBpop(
popTabs = popTables(
cond = WYcond, # FIA plot/condition data
tree = WYtree, # FIA tree data
seed = WYseed), # FIA seedling data
pltassgn = WYpltassgn, # plot assignments
pltassgnid = "CN", # uniqueid of plots
unitarea = WYunitarea, # area by estimation units
unitvar = "ESTN_UNIT", # name of estimation unit
strata = FALSE # if using post-stratification
)
```
```{r}
## Area of forest land by forest type and stand-size class, Wyoming, 2011-2013, with post-stratification
area.strat <- modGBarea(
GBpopdat = GBpopdat.strat, # pop - population calculations for WY, post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
rowvar = "FORTYPCD", # est - row domain
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE # out - return output with est(pse)
)
)
## Area of forest land by forest type and stand-size class, Wyoming, 2011-2013, no post-stratification
area.nostrat <- modGBarea(
GBpopdat = GBpopdat.nostrat, # pop - population calculations for WY, no post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
rowvar = "FORTYPCD", # est - row domain
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE # out - return output with est(pse)
)
)
```
```{r}
## Compare estimates and percent standard errors with and without post-stratification
head(area.strat$est)
head(area.nostrat$est)
```
```{r}
## Number of live trees by species, Wyoming, 2011-2013, with post-stratification
tree.strat <- modGBtree(
GBpopdat = GBpopdat.strat, # pop - population calculations for WY, post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "TPA_UNADJ", # est - number of trees per acre, numerator
estvar.filter = "STATUSCD == 1", # est - live trees only, numerator
rowvar = "FORTYPCD", # est - row domain
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE # out - return output with est(pse)
)
)
## Number of live trees by species, Wyoming, 2011-2013, no post-stratification
tree.nostrat <- modGBtree(
GBpopdat = GBpopdat.nostrat, # pop - population calculations for WY, no post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvar = "TPA_UNADJ", # est - number of trees per acre, numerator
estvar.filter = "STATUSCD == 1", # est - live trees only, numerator
rowvar = "FORTYPCD", # est - row domain
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE # out - return output with est(pse)
)
)
```
```{r}
## Compare estimates and percent standard errors with and without post-stratification
head(tree.strat$est)
head(tree.nostrat$est)
```
```{r}
## Number of live trees per acre by species, Wyoming, 2011-2013, with post-stratification
ratio.strat <- modGBratio(
GBpopdat = GBpopdat.strat, # pop - population calculations for WY, post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "TPA_UNADJ", # est - number of trees per acre, numerator
estvarn.filter = "STATUSCD == 1", # est - live trees only, numerator
rowvar = "FORTYPCD", # est - row domain
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE # out - return output with est(pse)
)
)
## Number of live trees per acre by species, Wyoming, 2011-2013, no post-stratification
ratio.nostrat <- modGBratio(
GBpopdat = GBpopdat.nostrat, # pop - population calculations for WY, no post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = TRUE, # est - sum estimation units to population
estvarn = "TPA_UNADJ", # est - number of trees per acre, numerator
estvarn.filter = "STATUSCD == 1", # est - live trees only, numerator
rowvar = "FORTYPCD", # est - row domain
table_opts = table_options(
row.FIAname = TRUE, # est - row domain names
allin1 = FALSE # out - return output with est(pse)
)
)
```
```{r}
## Compare estimates and percent standard errors with and without post-stratification
head(ratio.strat$est)
head(ratio.nostrat$est)
```
### By estimation unit (`sumunits = FALSE`)
If you just wanted estimates by estimation unit and did not want to sum them, set `sumunits = FALSE`. If `sumunits = FALSE`, the estimates and percent standard errors returned are by estimation unit, with an attribute, named 'unit' appended to data frame, with the unit value. The raw data returned will look the same as if `sumunits = TRUE`.
View Code
```{r}
## By estimation unit
## Area of forest land by forest type and stand-size class and Estimation Unit,
## Wyoming, 2011-2013
##################################################################################
area.unit <- modGBarea(
GBpopdat = GBpopdat, # pop - population calculations for WY, post-stratification
landarea = "FOREST", # est - forest land filter
sumunits = FALSE, # est - sum estimation units to population
rowvar = "FORTYPCD", # est - row domain
colvar = "STDSZCD", # est - column domain
returntitle = TRUE, # out - return title information
table_opts = list(
allin1 = TRUE) # out - return output with est(pse)
)
## Estimate and percent sampling error of estimate (first 6 rows)
head(area.unit$est)
## Unique estimation units
unique(area.unit$est$unit)
```
## References
Bechtold, William A.; Patterson, Paul L., Editors. 2005. The enhanced Forest Inventory and Analysis program national sampling design and estimation procedures. Gen. Tech. Rep. SRS-80. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 85 p.
Patterson, Paul L. 2012. Photo-based estimators for the Nevada photo-based inventory. Res. Pap. RMRS-RP-92. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 14 p.
Westfall, James A.; Patterson, Paul L.; Coulston, John W. 2011. Post-stratified estimation: with-in strata and total sample size recommendations. Canadian Journal of Forest Research. 41: 1130-1139.